
When researchers have done studies on adults with type 2 diabetes, although the participants as a whole have a positive average response to exercise training, as many as 15 to 20 percent of type 2 exercisers have been found to be “non-responders” (1). These are individuals who appear to be resistant to the beneficial effects of exercise training of all types because exercise training for them fails to improve their A1C (overall blood glucose control), body fat, body mass index, or other metabolic measures. But are there really exercise non-responders? And, if so, are you one of them?
Some researchers have blamed the exercise “non-response” observed in a minority of research subjects on inheriting bad genes. However, a large part of the data that these scientists used to “prove” their case came from animal research. For example, successive generations of rats have been bred until they had either a very high aerobic capacity or a low one, and the researchers then applied their findings that those animals with a low aerobic capacity don't gain the same metabolic benefits directly to humans.
People are far from being similar to lab rats, though! We’re much more genetically diverse, and our muscles can improve their aerobic capacity with training, regardless of what genes we inherited from our parents (2). In fact, a recent review of 18 training studies concluded that normal training adaptations to aerobic exercise are possible in adults with type 2 diabetes (3), again suggesting the environment is a more viable explanation for those few who don’t respond like everyone else.
What are these environmental factors? For starters, a big issue with human aerobic training is that not all individuals in exercise studies end up training similarly, despite the good intentions of the researchers. I know from training hundreds of research subjects over the years that many older people don’t push themselves as hard as they could when they’re doing the initial exercise test (especially when riding a cycle that makes their legs hurt), and their training protocol is then set up based on a lower-than-actual maximal capacity. So, they may simply not be doing as much total training or expending as many calories during exercise as others in the study.
Many older adults with diabetes also have joint issues or health problems that limit their ability to exercise, including excess body fat, high blood pressure, or nerve damage in their feet. What’s more, what people eat is seldom controlled well in exercise studies, and taking in excess food can override the benefits of exercise, including limiting how long or high insulin action is elevated and blood glucose control after workouts (4). In other words, it’s entirely possible to negate the effects of the last bout of exercise and diminish its acute (and chronic) metabolic benefits by overfeeding.
Simply being less active during the rest of the day can also impact whether you experience the expected results of doing the training. Not surprisingly, people who are more active all day long and not just during training sessions fare better as far as their metabolic health is concerned, even when exercise training is the same for all participants in a study (5).
Even the medications you take can limit your responses to doing exercise training. The most commonly prescribed medication for type 2 diabetes is metformin, and taking metformin can blunt your normal metabolic response to exercise training (6). Taking statins to lower your blood cholesterol can cause some muscular problems that may limit your ability to exercise, as can some other medications commonly prescribed for other health problems.
Even if it’s not the environment that is holding you back and you do have some genetic traits that may limit your exercise response, that certainly doesn’t mean that you won’t gain a lot of other health benefits—both physical and mental—from being more physically active. There really is no evidence that the potential to response to exercise training is limited if you have type 2 diabetes, type 1 diabetes, prediabetes, or obesity; in fact, even breaking up prolonged sitting time has measurable metabolic benefits for everyone (7). So, get up and go be active doing whatever you enjoy the most—and be as active as you possibly can all day long. Your body will thank you for it!
References Cited:
(1) Stephens NA, Sparks LM: Resistance to the beneficial effects of exercise in type 2 diabetes: Are some individuals programmed to fail? J Clin Endocrinol Metab 2015;100(1):43-52
(2) Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH: Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol Endocrinol Metab 2004;287:E857-862
(3) Wang Y, Simar D, Fiatarone Singh MA: Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review. Diabetes Metab Res Rev 2009;25:13-40
(4) Hagobian TA, Braun B: Interactions between energy surplus and short-term exercise on glucose and insulin responses in healthy people with induced, mild insulin insensitivity. Metabolism 2006;55:402-408
(5) Manthou E, Gill JM, Wright A, Malkova D: Behavioral compensatory adjustments to exercise training in overweight women. Med Sci Sports Exerc. 2010;42(6):1121-8
(6) Braun B, Eze P, Stephens BR, et al.: Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab 2008;33:61-7
(7) Dunstan DW, Kingwell BA, Larsen R, et al.: Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses. Diabetes Care 2012;35:976-983